Recognizing Short Duration Hand Movements from Accelerometer data

Publication Type:

Conference Paper

Authors:

N.C. Krishnan, G. Pradhan, S. Panchanathan

Source:

International Conference on Multimedia and Expo (ICME 2009), Cancun, Mexico (2009)

Abstract:

Processing of accelerometer data for recognizing short duration hand movements is a challenging problem. This paper focuses on characterization of acceleration data corresponding to hand movements (lift to mouth, scoop, stir, pour, unscrew cap) using aggregate statistical features and histograms computed from raw acceleration and derivative of the acceleration data. Data collected from an accelerometer placed on the wrist of subjects was used to perform the analysis. Supplementing the statistical features with raw acceleration histograms had a very marginal effect on the classification performance. However, the addition of derivative histograms resulted in a considerable improvement in the classification accuracy by nearly 8%. The effect of bin size of the derivative histograms was also conducted. It was observed that having a small number of bins decreased the classification accuracy by 3%. We thus show that adding features that capture the distribution of the changes in the acceleration data improve the classification performance.

Authors

Narayanan Chatapuram Krishnan

Narayanan Chatapuram Krishnan

Ph.D Student Researcher

Gaurav Nandkishor Pradhan

Gaurav Nandkishor Pradhan

Postdoctoral Fellow

Dr. Sethuraman "Panch" Panchanathan

Dr. Sethuraman "Panch" Panchanathan

Director, National Science Foundation

Projects

Traditional approaches to human activity recognition relying on vision as the primary sensory medium have met with little success. The emergence of the ubiquitous and pervasive paradigm of computing has ushered in new low bandwidth wearable, unobtrusive, inexpensive and…