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Abstract

Active learning techniques have gained popularity to re-
duce human effort in labeling data instances for inducing
a classifier. When faced with large amounts of unlabeled
data, such algorithms automatically identify the exemplar
and representative instances to be selected for manual an-
notation. More recently, there have been attempts towards
a batch mode form of active learning, where a batch of
data points is simultaneously selected from an unlabeled
set. Real-world applications require adaptive approaches
for batch selection in active learning. However, existing
work in this field has primarily been heuristic and static.
In this work, we propose a novel optimization-based frame-
work for dynamic batch mode active learning, where the
batch size as well as the selection criteria are combined in
a single formulation. The solution procedure has the same
computational complexity as existing state-of-the-art static
batch mode active learning techniques. Our results on four
challenging biometric datasets portray the efficacy of the
proposed framework and also certify the potential of this
approach in being used for real world biometric recogni-
tion applications.

1. Introduction
The application of learning frameworks in real-world

contexts necessarily requires a large amount of labeled data
in the training phase. The rapid escalation of technology
and the widespread emergence of modern technological
equipments have resulted in the generation of humungous
amounts of digital data. However, while gathering vast
quantities of digital data is cheap and easy, annotating them
with class labels entails significant human labor. This has
set the stage for research in the field of active learning.

In addition to the large quantities of data that are gener-
ated each day (for example, YouTube videos), the presence
of multiple labeling agents (for example, the vast consumer
population) necessitates a scheme to simultaneously select
and learn from multiple data points. To address this need,
active learning techniques, which attempt to select a batch

of data points at one shot from an unlabeled set, have been
proposed in recent years. Sample applications of such batch
mode active learning (BMAL) techniques include content
based image retrieval (CBIR) [10], medical image classifi-
cation [12] and text classification [11].

BMAL algorithms are of paramount importance in appli-
cations involving video data. Modern video cameras have
a high frame rate and consequently, the captured data has
high redundancy. Selecting batches of relevant frames from
a superfluous frame sequence in captured videos is a sig-
nificant and valuable challenge. Due to its wide usage, we
focus on face based biometric recognition systems as the ex-
emplar application in this paper to explain our framework.
Although validated on biometric data, the proposed frame-
work is generic and can be used in any application where
it is required to select a number of representative entities
simultaneously from repetitious samples.

An ideal BMAL system can be conceptualized as con-
sisting of two main steps: (i) deciding the batch size (num-
ber of data points to be queried from a given unlabeled set
of points) and (ii) selecting the most appropriate data points
from the unlabeled pool once the batch size has been deter-
mined. Both these steps are critical in ensuring maximum
generalization capability of the learner with minimum hu-
man labeling effort, which is the primary objective in any
active learning application. However, the existing few ef-
forts on batch mode active learning (see Section 2) focus
only on the second step of identifying a criteria for selecting
informative batches of data samples and require the batch
size to be specified in advance by the user. In an application
like face based biometric recognition, deciding on the batch
size (number of relevant frames in a video) in advance and
without any knowledge of the data stream being analyzed,
is impractical. The batch size should depend on the quality
and variability of the images in the unlabeled stream and
also on the level of confidence of the current classifier on
the unlabeled images.

In this paper, we propose a novel strategy for batch mode
active learning, which adaptively selects samples based on
the particular data stream being analyzed. We exploit nu-
merical optimization based techniques to simultaneously
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decide the batch size as well as identify the informative
data points for manual annotation, through a single frame-
work. Our method has the same computational complexity
as state-of-the-art static BMAL technique, where the batch
size is pre-specified by the user.

The rest of the paper is organized as follows: in Section
2, we present existing work on active learning; Section 3 de-
tails the mathematical formulation of our approach, along
with an intuitive unsupervised learning technique for dy-
namic batch size selection for comparison of performance;
the results of our experiments are presented in Section 4;
and we conclude with discussions in Section 5.

2. Related Work
Active learning methods can be broadly categorized as

online and pool-based. In online active learning, the learner
encounters the data points sequentially over time and at
each instant it needs to decide whether the current point has
to be queried for its class label [1],[9],[20]. In contrast, in
pool-based active learning, the learner is exposed to a pool
of unlabeled data points and it iteratively selects instances
for manual annotation.

Pool-based methods can be sub-categorized as serial
query based, where a single point is queried at a time and
batch mode, where a batch of points is queried simultane-
ously before updating the classifier. Majority of the active
learning techniques have been applied in the serial query-
based setting and can be divided into 4 categories - (i) SVM
based approaches, which decide the next point to be queried
based on its distance from the hyperplane in the feature
space [25], (ii) Statistical approaches, which query points
such that some statistical property of the future learner
(eg the learner variance) is optimized [4], (iii) Query by
Committee, which chooses points to be queried based on
the level of disagreement among an ensemble of classifiers
[2],[6], [14] and (iv) Other miscellaneous approaches [19].

Amidst batch mode (BMAL) techniques, Brinker [3]
proposed a strategy which queried a diverse batch of points
where diversity was measured as the angle between the hy-
perplane of the selected point to all the other hyperplanes
of the already selected points. Hoi et al.[10], [11],[12] used
the Fischer information matrix as a measure of model un-
certainty and proposed to select a batch of points which re-
duced the Fischer information. Guo and Schuurmans [8]
formalized the problem by defining an objective function
and selecting a set of unlabeled points which optimized the
value of that function. This approach has a well-defined
mathematical basis as compared to the other heuristic tech-
niques and was found to be the best performing BMAL
scheme so far.

All the aforementioned techniques of batch mode active
learning, including [8], concentrate only on the develop-
ment of a selection criteria assuming the batch size is cho-

sen by the user in advance. In an application like face-based
biometric recognition, this is not a practical assumption.
We would expect the number of relevant frames to be large
when the active learner is exposed to an unlabeled video
containing many new identities unknown to the learner, and
the number to be low when the unlabeled video contains
images similar to the training data. Thus, there is a strong
need for the active learner to adapt to different contexts and
dynamically decide the batch size as well as the specific in-
stances to be queried. In this paper, we propose an optimiza-
tion technique to address this issue. The strategy is similar
to the work of Guo and Schuurmans [8], which however,
has a different objective and is restricted to static scenarios
where the batch size is user specified. With the same com-
putational complexity as [8], we simultaneously solve for
both the batch size and the specific points to be selected for
a given unlabeled pool. We now describe the mathematical
formulation of our approach.

3. Dynamic Batch Mode Active Learning:
Mathematical Formulation

3.1. Optimization based Dynamic Batch Mode Ac-
tive Learning

Consider a BMAL problem which has a current labeled
set Lt and a current classifier wt trained on Lt. The clas-
sifier is exposed to an unlabeled video Ut at time t. The
objective is to select a batch B from the unlabeled stream
in such a way that the classifier wt+1, at time t+ 1, trained
on Lt ∪ B has maximum generalization capability. An ef-
ficient method to judge the generalization capability of the
updated learner is to compute its entropy on the remaining
set of Ut−B images after batch selection (given that future
data is unknown). To ensure high generalization power of
the future learner, we need to minimze the entropy of the
updated learner on the remaining |Ut −B| images.

From a data geometry point of view, it is possible that
an objective function with only the entropy criterion will
select images from high-density regions in the space of the
unlabeled data points. This is because, the set of Ut−B im-
ages may be dominated by samples from such high-density
regions constituting a large portion of the data. However,
considering the specific challenges of face based biomet-
rics, we would like to ensure that our learner, in addition
to learning from frames in high-density regions, also learns
from informative visages made briefly by the subjects (eg a
sudden smile or a sudden eyebrow raise). These images lie
away from the main body of points, possibly in low density
regions. To address this issue, we impose a condition in the
objective function which selects images from low-density
regions in the data space, i.e. images that have a high dis-
tance from the remaining set.

Let C denote the total number of classes and ρj denote
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the average Euclidean distance of an unlabeled image xj

from other images in the video Ut. Greater values of ρj de-
note that the point is located in a low-density region. The
two conditions mentioned previously can be satisfied by
defining a score function as follows:

f(B) =
∑
j∈B

ρj − λ1

∑
j∈Ut−B

S(y|xj , w
t+1) (1)

The first term denotes the sum of the average distances of
each selected point from other points in the unlabeled video,
while the second term quantifies the sum of the entropies of
the learner on each remaining point in the unlabeled stream.
λ1 is a tradeoff parameter.

The problem therefore reduces to selecting a batch B
of unlabeled images which produces the maximum score
f (B). Let the batch size (number of images to be selected
for annotation) be denoted by m, which is an unknown.
Since there is no restriction on the batch size m, the ob-
vious solution to this problem is to select all the images
in the unlabeled video, leaving no image behind. Then,
the entropy term becomes 0, and the density term attains
its maximum value. Consequently, f (B) will also attain its
maximum score. However, querying all the images for their
class labels is not an elegant solution and defeats the basic
purpose of active learning. To prevent this, we modify the
score function by enforcing a penalty on the batch size as
follows:
f̃(B) =

∑
j∈B

ρj − λ1

∑
j∈Ut−B

S(y|xj , w
t+1)− λ2m (2)

The third term essentially reflects the cost associated with
labeling the images, as the value of the objective function
decreases with every single image that needs to be labeled.
The extent of labeling penalty can be controlled through the
weighting parameter λ2. Defining the score function in this
way ensures that any and every image is not queried for its
class label. Only images for which the density and entropy
terms outweigh the labeling cost term, get selected.

We therefore need to select a batch B of unlabeled im-
ages so as to maximize f̃(B). Since brute force search
methods are prohibitive, we employ numerical optimization
techniques to solve this problem. We define a binary vec-
tor M of size |Ut| where each entry denotes whether the
corresponding point is to be queried for its class label. We
rewrite the objective function in Equation 2 into an equiva-
lent function in terms of the defined vector M :
max
M,m

∑
j∈Ut

ρjMj − λ1

∑
j∈Ut

(1−Mj)S(y|xj , w
t+1)− λ2m

(3)
subject to the constraint:

Mj ∈ [0, 1] (4)

In this formulation, note that if an entry of M is 1, the cor-
responding image will be selected for annotation and if it
is 0, the image will not be selected. The number of images

to be selected, is therefore equal to the number of non-zero
entries in the vector M , or the zero-norm of M . Hence,

m = ||M ||0 ≈ ||M ||1 =
∑

j

Mj (5)

Here, we have replaced the zero norm of M by its tightest
convex approximation, which is the one-norm ofM (similar
to [26]). Also, from constraint 4, the one-norm is simply
the sum of the elements of the vector M . Substituting m in
terms of M , the formulation becomes:

max
M

∑
j∈Ut

ρjMj−λ1

∑
j∈Ut

(1−Mj)S(y|xj , w
t+1)−λ2

∑
j

Mj

subject to the constraint: Mj ∈ [0, 1]. The above optimiza-
tion is an integer programming problem and is NP hard. We
therefore relax the constraint to make it a continuous opti-
mization problem:

max
M

∑
j∈Ut

ρjMj−λ1

∑
j∈Ut

(1−Mj)S(y|xj , w
t+1)−λ2

∑
j

Mj

(6)
subject to the constraint: 0 ≤Mj ≤ 1.

This problem is solved using the Quasi Newton method
[21] 1. The final value of M is used to govern the number
of points and the specific points to be selected for the given
data stream (by greedily setting the top m entries in M as 1
to recover the integer solution, where m =

∑
j Mj). Hence,

solving a single optimization problem helps in dynamically
deciding the batch size and selecting the specific points for
manual labeling.

While the proposed framework combines batch size and
data sample selection in a single formulation, it is also pos-
sible to think of an intuitive approach to solve this problem
using a clustering-based batch size selection step, followed
by application of a traditional static BMAL algorithm (such
as [8]). For purposes of comparison of performance, we
present below an alternative clustering-based approach for
selecting the batch size in the latter case.

3.2. Clustering-based Batch Size Selection: An Al-
ternative Approach

An obvious strategy to decide the batch size is to use
a clustering algorithm to segment the images in the unla-
beled video stream into relatively pure clusters (in terms of
class labels) followed by a method to compute the batch
size. Since the number of subjects (and hence, the number
of clusters) in the data stream is an unknown, we need to
exploit the spatial distribution of the unlabeled points for
clustering (and cannot use algorithms like k-means which
require the number of clusters as an input). This motivates
the application of the DBSCAN algorithm (which can auto-
matically determine the number of clusters for a given set of
points) to isolate high density regions as separate clusters.
For details about this method, please refer [23]. Our initial

1For details about the solution process and the approximation of the
future unknown classifier wt+1, please refer to the Supplemental File
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experiments (not presented here for brevity) confirmed the
efficacy of DBSCAN in isolating images of different sub-
jects into separate clusters.

The Silhouette Coefficient (based on the cohesion and
separation measures of a cluster) is a natural choice to de-
cide the number of points to be queried from each clus-
ter. It can attain a maximum value of 1, where a high
value denotes a compact and well separated cluster. Intu-
itively, we would like to select few points for a compact and
well-separated cluster and more points otherwise. Thus, the
number of points to be selected from a cluster should be
proportional to (1 - the Silhouette coefficient). Also, we
would like to select more points from larger clusters. If m
is the total number of points, mi is the number of points in
cluster i, SCi is the Silhouette coefficient of cluster i and
C is a constant, the number of points to be selected from
cluster i can thus be defined as:

Ni = C ∗ mi

m
∗ (1− SCi) (7)

This operation is performed for each of the identified
clusters to compute the number of points to be selected (the
sum of the values obtained across all clusters provides the
overall batch size). The dynamically computed batch size
for each cluster can now be passed as an input to any stan-
dard static BMAL procedure for selecting the required num-
ber of points from the corresponding cluster. In our exper-
iments, we used the state-of-the-art technique proposed in
[8] to decide the specific points to be queried from a cluster,
where we replaced the terms in the objective function with
the density and entropy terms, similar to our formulation,
for fair comparison.

4. Experiments and Results
Our study consisted of three experiments to validate the

efficiency of our framework. Using preliminary experi-
ments, the parameters λ1 and λ2 were empirically set to 1
and C to 50 in the study. The entropy term in the objective
function necessitates a classifier which can provide prob-
ability estimates of an unlabeled point with respect to all
classes. So, we used the Gaussian Mixture Models (GMMs)
as the classifier in our experiments. GMMs have been suc-
cessfully used in face recognition [13] in earlier work.

4.1. Datasets

We used four challenging biometric datasets in our dif-
ferent experiments:

(i) The VidTIMIT dataset [22], which contains video
recordings of subjects reciting short sentences under uncon-
strained natural conditions.

(ii) The MOBIO dataset [18], which was recently cre-
ated for the MOBIO (Mobile Biometry) challenge to test
state-of-the-art face and speech recognition algorithms. It
contains recordings of subjects under challenging real world

conditions, captured using a hand-held device.
(iii) The MBGC (Multiple Biometric Grand Challenge)

dataset [24], collected by the National Institute of Standards
and Technology (NIST), which is the leading dataset to test
commercial biometric recognition algorithms and contains
video recordings of subjects under uncontrolled indoor and
outdoor lighting.

(iv) The FacePix dataset (www.facepix.org), which con-
tains 181 (−90 degree to 90 degree) pose images of each
of 30 subjects in one degree increments. It also contains
frontal images of each subject under varying illumination,
where a spotlight was moved in one degree increments. The
dataset has been used to study the effects of varying poses
and illumination angles in face recognition [15].

The VidTIMIT, MOBIO and MBGC datasets represent
videos captured under different real world settings (station-
ary, using handheld device and under uncontrolled lighting
respectively). FacePix contains calibrated measurements of
pose and illumination variations, which were useful to study
the efficacy of our framework. 2

4.2. Experiment 1: Dynamic vs Static BMAL

The purpose of this experiment was to demonstrate the
efficacy of dynamic batch selection over static selection in
applications like face recognition. The VidTIMIT and the
MOBIO biometric datasets were used in this experiment.
25 subjects were randomly selected from each dataset. Our
preliminary experiments (not presented here due to lack of
space) confirmed that the Discrete Cosine Transform (DCT)
feature could effectively differentiate the subjects and hence
was used in this experiment (for details about the feature
extraction process, please refer [5]). The feature extraction
step was followed by PCA to reduce the dimension.

A classifier was induced with 1 training video of each of
the 25 subjects, used in this experiment. Unlabeled video
streams were then presented to the learner. To demonstrate
the generalizability with different subject combinations, the
number of subjects in each unlabeled stream was varied be-
tween 1 and 10. For each stream, the batch size and the
specific points were selected simultaneously using the pro-
posed optimization strategy (Equation 6). The classifier was
updated with the selected points and tested on test videos
containing the same subject(s) as in the corresponding un-
labeled videos.

To illustrate the usefulness of dynamic batch size selec-
tion, the accuracy was compared against the case when all
the frames in the unlabeled video were used for learning
and also when the batch size was static and predetermined.
The static batch size was selected as 10 (the effect of this
parameter is studied later) and the optimization scheme (as

2Our purpose was to test the performance of active learning and so, for
the MBGC and MOBIO datasets, we did not follow the protocols specified
in the actual challenge which were intended for face recognition.
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(a) VidTIMIT dataset (b) MOBIO dataset

Figure 1. Dynamic vs Static BMAL on 100 unlabeled video streams from the VidTIMIT and MOBIO datasets (static batch size = 10).

Number of subjects in the video stream 1 2 3 4 5 6 7 8 9 10
VidTIMIT dataset 58% 68.1% 55.58% 45.46% 51.11% 35.71% 35.88% 41.38% 51.93% 47.43%

MOBIO dataset 54.4% 48.4% 45.4% 45.4% 45.1% 46.8% 46.5% 46.8% 46.4% 44.6%
Table 1. Mean percent increment in labeling cost using static selection with batch size 80 against optimization based dynamic selection.

outlined in Section 3.2) was used to select the 10 points,
for fair comparison. The results are shown in Figure 1 and
are averaged over 10 runs to rule out effects of randomness.
We see that, in both datasets, the accuracy obtained with
dynamic batch selection very closely matches that obtained
when trained on all the frames. This emphasizes the ef-
ficiency of the framework to properly identify a batch size
and the specific points so that the resulting classifier is com-
parable to the one trained using all the images. We also note
that the classifier obtained when the batch size is static and

(a) VidTIMIT dataset

(b) MOBIO dataset

Figure 2. Dynamic vs Static BMAL on 100 unlabeled video
streams from VidTIMIT and MOBIO (static batch size = 80).

pre-determined does not attain good generalization capabil-
ity compared to dynamic selection.

In general, we can expect that if we select a greater num-
ber of images from an unlabeled set, the updated learner
will perform better on a test set containing the same sub-
jects. Thus, if we select a higher value of the batch size
in a static BMAL learner, then the selection is expected to
perform better than in Figure 1. This is depicted in Figure
2 where the static batch size was taken as 80 instead of 10.
We see that the static selection performs almost as well as
the learner obtained when trained on all frames. However,
to achieve this performance, the static selection required a
significantly greater number of images to be labeled than
dynamic selection. Table 1 shows the mean percentage in-
crement in the number of images that had to be labeled us-
ing the static selection with batch size 80 against optimiza-
tion based dynamic selection. It is evident that for both the
datasets, the static framework required a much greater num-
ber of images to be labeled to marginally outweigh dynamic
selection. Hence, by selecting a number at random, the
static batch selection strategy can sometimes query too few
points leading to poor generalization power of the updated
learner, while in some cases it can entail considerable label-
ing cost to attain an insignificant increment in accuracy. The
dynamic selection strategy, on the other hand, computes the
batch size by exploiting the level of confidence of the future
learner on the images in the current unlabeled video and
thus provides a concrete basis to decide the batch size.

4.3. Experiment 2: Proposed Dynamic BMAL vs
Clustering-based Dynamic BMAL

Having demonstrated the superiority of dynamic batch
size selection over static selection, we performed a compar-
ative study of the proposed optimization framework with
the two step process of clustering followed by static BMAL
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(a) Experiment with unknown subjects from the VidTIMIT
dataset

(b) Experiment with unknown subjects from the MBGC
dataset

Figure 3. Comparison of Proposed and Clustering-based batch size selection on the VidTIMIT and MBGC datasets.

Proportion of new identities 0% 20% 40% 60% 80% 100%
Accuracy using proposed approach 87.1% 79.9% 82.8% 84.6% 86.6% 81.8%
Accuracy using clustering approach 84.1% 68.4% 61% 53.4% 63.8% 63.9%

Table 2. Test set accuracies using Proposed and Clustering based BMAL on the MBGC dataset with increasing proportions of new identities.

(Section 3.2), for dynamic batch selection. We used the Vid-
TIMIT and MBGC datasets for this experiment. Contrary
to the previous experiment, where all the 25 subjects were
present in the training set, the subjects in this experiment
were divided into two groups - a “known” group containing
20 subjects and an “unknown” group containing the remain-
ing 5 subjects. A classifier was induced with 1 video of each
of the known subjects. Unlabeled video streams were then
presented to the learner and the batch size decided by the
two schemes were noted. The proportion of unknown sub-
jects in the unlabeled video was gradually increased from
0% (where all the subjects in the unlabeled video were from
the training set) to 100% (where none of the subjects in the
unlabeled video were present in the training set) in steps
of 20%. The learner was not given any information about
the composition of the video stream. Also, the size of each
video stream was kept the same to facilitate fair compari-
son. The DCT feature, followed by PCA, was used again.

The results of the aforementioned experiment (averaged
over 10 trials) are shown in Figure 3. The x-axis denotes
the percentage of atypical images in the unlabeled pool and
the y-axis denotes the batch size predicted using both the
proposed and clustering-based strategies. We note that in
both the experiments, as the proportion of salient images
in the unlabeled stream increases, the uncertainty term out-
weighs the cost term in Equation 6 and the proposed al-
gorithm decides on a larger batch size. This matches our
intuition because, with growing percentages of atypical im-
ages in the video stream, the confidence of the learner on
those images decreases and so it needs to query more im-
ages to attain good generalization capability. The cluster-
ing based scheme, on the other hand, does not consider the
training set in deciding the batch size and so, it fails to re-
flect the uncertainty of the classifier. The batch size, there-
fore, does not bear any specific trend to the percentage of
atypical images in the unlabeled set. Thus, while the clus-
tering scheme decides the number of points to be queried

based on a score computed from the spatial distribution of
the unlabeled points, the optimization based technique pro-
vides a more logical ground to decide the batch size by con-
sidering the performance of the updated learner.

Besides the predicted batch size, it is equally important
to analyze the accuracy obtained on test sets with similar
compositions as the unlabeled videos. Since the proposed
scheme appropriately reflects the uncertainty of the learner
and queries points accordingly, it is expected to have a better
accuracy on test videos as compared to the clustering tech-
nique. This is confirmed in Table 2 which shows the accu-
racy obtained on test videos from the MBGC dataset using
the two strategies. It is evident that the proposed scheme
achieved significantly better generalization as compared to
the clustering based approach with varying proportions of
new identities in the unlabeled stream. The result on the
VidTIMIT dataset was similar and is not presented due to
lack of space.

To further demonstrate the usefulness of the proposed
approach in batch size selection under changing conditions,
we conducted experiments with unlabeled videos contain-
ing images with different poses and illumination conditions
compared to the training images. These are detailed below:

Presence of images with unknown pose angles: The
FacePix dataset was used in this experiment. The training
set contained frontal images (−10 degree to 10 degree) of
25 randomly chosen subjects. Unlabeled sets of images of
the same 25 subjects were presented to the learner and the
percentage of profile images (−45 degree to −90 degree
and 45 degree to 90 degree) was gradually increased from
0% (where all the unlabeled images were frontal) to 100%
(where the unlabeled video contained only profile images)
in steps of 20%. The Gabor feature was used here (as in [7])
and PCA was used to reduce the dimension.

Presence of images under unknown illumination: The
FacePix dataset was used in this experiment also. As be-
fore, the training set contained images of 25 subjects where
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(a) Experiment with varying poses from the FacePix
dataset

(b) Experiment with varying illumination from the
FacePix dataset

Figure 4. Comparison of Proposed and Clustering-based batch size selection on the FacePix dataset.

the illumination angle was −10 degree to 10 degree. Un-
labeled images of the same subjects were presented to the
learner and the percentage of images where the angle of il-
lumination varied between −45 degree to −90 degree and
45 degree to 90 degree was gradually increased from 0%
to 100% in steps of 20%. The Gabor feature, followed by
PCA, was used in this experiment (as used in [16]). The
results are shown in Figure 4 and further corroborate the
conclusions drawn in the previous experiment.

4.4. Experiment 3: Active Learning Performance

Here, we study the practical applicability of the end-to-
end system by analyzing its performance under real world
settings. The VidTIMIT and the MOBIO datasets, repre-
senting challenging real-world conditions, were used in this
experiment. A classifier was induced with 1 training video
of each of 25 randomly chosen subjects. Unlabeled video
streams (each containing about 250 frames) were then pre-
sented to the classifier sequentially. The images in the video
streams were randomly chosen from all 25 subjects and did
not have any particular proportion of subjects in them, to
mimic general real-world conditions. For each video, opti-
mization based dynamic BMAL was used to query images.
The selected images were appended to the training set, the
classifier updated and then tested on a test video containing
about 5000 images spanning all the 25 subjects.

The proposed approach was compared with three heuris-
tic BMAL schemes - (i) Random Sampling, (ii) Diversity
based BMAL, as proposed by Brinker [3] and (iii) Uncer-
tainty Based Ranked Selection, where the top k uncertain
points were queried from the unlabeled video, k being the
batch size. For each video stream, the dynamically com-
puted batch size was noted and used for the corresponding
unlabeled video in each of the heuristic techniques, for fair
comparison. The performance was also compared against
the two step process of clustering followed by static BMAL
(Section 3.2).

The label complexity (number of batches of labeled ex-
amples needed to achieve a certain level of accuracy) was
used as the metric for quantifying performance in this ex-
periment. The average time taken by each approach, to

query images from an unlabeled stream, was also noted.
The results are shown in Table 3. As evident from the run-
ning time figures, the proposed approach is computation-
ally intensive compared to the heuristic BMAL techniques.
However, the label complexity values, to attain a test accu-
racy of 85%, is markedly lower for the proposed approach.
This asserts the fact that the proposed scheme succeeds in
selecting the salient and prototypical data points as com-
pared to the heuristic approaches and attains a given level
of accuracy with significantly reduced human labeling ef-
fort. The clustering scheme followed by the optimization
framework achieves comparable label complexity as our ap-
proach. However, it is a two step process and therefore in-
volves more computation than our approach which is de-
picted in the running time values. 3

5. Conclusions
In this work, we proposed a novel optimization scheme

for dynamic batch mode active learning. Our framework
solves for the batch size as well as the specific points to be
queried through a single formulation and has the same com-
putational complexity as the state of the art static BMAL
algorithm [8]. The results showed immense promise in us-
ing the proposed approach in real-world batch mode active
learning applications. The proposed algorithm is flexible
and it is straightforward to extend it for dynamic batch se-
lection in situations where multiple sources of information
(eg. audio and video data) are available. For instance, Equa-
tion 6 can be modified by appending relevant terms from the
respective sources, together with a penalty on the batch size:

max
M

∑
j∈Ut1

ρjMj −
∑

j∈Ut1

(1−Mj)S(y|xj , w
t+1) +

∑
j∈Ut2

ρjMj

−
∑

j∈Ut2

(1−Mj)S(y|xj , w
t+1)−

∑
j

Mj

Moreover, if contextual information is available (eg location
of a subject, whether at home or in office), it can be used to

3A visual illustration of the images selected from a given video, using
each of the techniques, is shown in Appendix B of the Supplemental File.
The FacePix dataset was chosen to demonstrate the effectiveness of the
framework under pose and illumination variations.
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VidTIMIT VidTIMIT MOBIO MOBIO
Label Complexity Time(seconds) Label Complexity Time(seconds)

Proposed Approach 8.67 105.66 20.67 157.67
Diversity based BMAL 27.67 1.3 63.33 1.38

Uncertainty based BMAL 23.67 13.98 44.67 21.46
Random Sampling 31.33 0.01 61.67 0.01

Clustering based BMAL 11.33 122.11 22.67 174.28
Table 3. Number of batches of labeled images required to achieve 85% accuracy and the time taken (in seconds) to query a batch of images
from an unlabeled pool with 250 images. The results have been averaged over 3 runs with different orders of the unlabeled video streams

construct a prior probability vector depicting the chances of
seeing particular acquaintances in a given context. The en-
tropy term can then be computed on the posterior probabil-
ities obtained by multiplying the likelihood values returned
by the classifier with the context aware prior. Thus, subjects
not expected in a given context (eg. a home acquaintance
in an office setting) will have low priors and consequently,
the corresponding posteriors will not contribute much in the
entropy calculation. The framework can therefore be ex-
tended to perform context-aware adaptive batch selection.
Our preliminary experiments in these directions have shown
promising results.

Our future work will mainly include handling scaling is-
sues of the proposed algorithm; the quadratic programming
problem which needs to be solved as a part of the optimiza-
tion procedure can be a bottleneck in dealing with large
scale data. However, there have been recent efforts [17] to
efficiently solve QP problems by using a pivoting algorithm
and the KKT conditions to significantly reduce computa-
tions. This can be judiciously used in our approach, making
it feasible and meritorious even for large-scale data.
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