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Abstract

Emotion analysis and recognition has become an in-
teresting topic of research among the computer vision re-
search community. In this paper, we first present the emoF-
BVP database of multimodal (face, body gesture, voice and
physiological signals) recordings of actors enacting vari-
ous expressions of emotions.The database consists of au-
dio and video sequences of actors displaying three differ-
ent intensities of expressions of 23 different emotions along
with facial feature tracking, skeletal tracking and the corre-
sponding physiological data. Next, we describe four deep
belief network (DBN) models and show that these models
generate robust multimodal features for emotion classifica-
tion in an unsupervised manner. Our experimental results
show that the DBN models perform better than the state
of the art methods for emotion recognition. Finally, we
propose convolutional deep belief network (CDBN) mod-
els that learn salient multimodal features of expressions of
emotions. Our CDBN models give better recognition accu-
racies when recognizing low intensity or subtle expressions
of emotions when compared to state of the art methods.

1. Introduction
In recent years, there has been a growing interest in

the development of technology to recognize an individual’s
emotional state. There is also an increase in the use of mul-
timodal data (facial expressions, body expressions, vocal
expressions and physiological signals) to build such tech-
nologies. Each of these modalities have very distinct sta-
tistical properties and fusing these modalities helps us learn
useful representations of the data. Emotion recognition is a
process that uses low level signal cues to predict high level
emotion labels. Literature has shown various techniques
for generating robust multimodal features [1]-[4] for emo-
tion recognition tasks. The high dimensionality of the data,
the non-linear interactions across the modalities along with
the fact that the way an emotion is expressed varies across
people complicate the process of generating emotion spe-

cific features [5],[6]. Deep architectures and learning tech-
niques have shown to overcome these limitations by captur-
ing complex non-linear feature interactions in multimodal
data [7].

In this paper, as our first contribution, we present the
emoFBVP database of multimodal recordings-facial expres-
sions, body gestures, vocal expressions and physiological
signals, of actors enacting various expressions of emotions.
The database consists of audio and video sequences of ac-
tors enacting 23 different emotions in three varying intensi-
ties of expressions along with facial feature tracking, skele-
tal tracking and the corresponding physiological data. This
is one of the first emotion databases that has recordings of
varying intensities of expressions of emotions in multiple
modalities recorded simultaneously. We strongly believe
that the affective computing community will greatly benefit
from the large collection of modalities recorded. Our sec-
ond contribution investigates the use of deep learning archi-
tectures - DBNs and CDBNs for multimodal emotion recog-
nition. We describe four deep belief network (DBN) mod-
els and show that they generate robust multimodal features
for emotion classification in an unsupervised manner. This
is done to validate the use of our emoFBVP database for
multimodal emotion recognition studies. The DBN models
used are extensions of the models proposed by [7] for audio-
visual emotion classification. Finally, we propose convolu-
tional deep belief network (CDBN) models that learn salient
multimodal features of low intensity expressions of emo-
tions.

2. Related Work
Previous research has shown that deep architectures ef-

fectively generate robust features by exploiting the com-
plex non-linear interactions in the data [8]. Deep architec-
tures and learning techniques are very popular in the speech
and language processing community [9]-[11]. Ngiam et
al. [12] report impressive results on audio-visual speech
classification. They use sparse Restricted Boltzmann Ma-
chines (RBMs) for cross-modal learning, shared representa-
tion learning and multimodal fusion on CUAVE and AVLet-
ters dataset. Srivastava et al. [13] applied multimodal deep



belief networks to learn joint representations that outper-
formed SVMs. They used multimodal deep Boltzmann ma-
chines to learn a generative model of images and text for im-
age retrieval tasks. Kahou et al. used an ensemble of deep
learning models to perform emotion recognition from video
clips [14]. This was the winning submission to the Emo-
tion Recognition in the Wild Challenge [15]. Deep learn-
ing has also been applied in many visual recognition studies
[16]-[20]. Our research is motivated by the above recent ap-
proaches in multimodal deep learning. In this paper, we fo-
cus on applying deep architectures for multimodal emotion
recognition using face, body, voice and physiological sig-
nal modalities. We apply extensions of known DBN mod-
els for multimodal emotion recognition using the emoFBVP
database and investigate recognition accuracies to validate
the utility of the database for emotion recognition tasks.
To the best of our knowledge, the use of DBNs for mul-
timodal emotion recognition of data comprising of all the
above mentioned modalities ( facial expressions, body ges-
tures, vocal expressions and physiological signals) has not
been explored by the affective research community.

Recent developments in deep learning techniques exploit
the use of single layer building blocks called as Restricted
Boltzmann Machines (RBMs) [21] to build DBNs in an un-
supervised manner. DBNs are constructed by greedy layer-
wise training of stacked RBMs to learn hierarchical repre-
sentations from the multimodal data [22]. RBMs are undi-
rected graphical models that use binary latent variables to
represent the input. Like [7], we also use Gaussian RBMs
for training the first layer of the network. The visible units
of the first layer are real-valued. The deeper layers are
trained using Bernoulli-Bernoulli RBMs that employ visi-
ble and hidden units that are binary valued. The joint prob-
ability distribution for a Gaussian RBM with visible units v
and hidden units h is given as follows:

P (v, h) = 1

Z
exp (−E(v, h)) , (1)

The corresponding energy function with q ∈ RD and r ∈
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These parameters are learned using a technique called con-
trastive divergence, explained in [23]. σ is a hyperparameter
and Z is a normalization constant. The conditional proba-
bility distributions of the Gaussian RBM are as follows:
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We include a regularization penalty as in [16] given as:
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Here, E[.] is the conditional expectation given the data, λ is
a regularization parameter, and p is a constant that specifies
the activation of the hidden unit.

Convolutional deep belief networks (CDBNs) [24] are
similar to DBNs and can be trained in a greedy layer-wise
fashion. Lee et al [24] used CDBNs to show good perfor-
mance in many visual recognition tasks. Convolutional re-
stricted Boltzmann machines (CRBMs) [24]-[26] are build-
ing blocks for (CDBNs). In a CRBM [22], the weights be-
tween the hidden units and visible units are shared among
all locations in the hidden layer. The CRBM consists of
two layers: an input (visible) layer V and a hidden layer
H. The hidden units are binary-valued, and the visible units
are binary-valued or real-valued. Please refer to Lee et al.
[24] for the expression for the energy function, conditional
and joint probabilities. In this paper, we use CRBMs with
probabilistic max-pooling as building blocks for convolu-
tional deep belief networks. For training the CRBMs, we
use contrastive divergence [23] to approximate the gradient
of the log-likelyhood term effectively. Like in [16], we add
a sparsity penalty term as well. Post training, we stack the
CRBMs to form a CDBN.

The rest of the paper is organized as follows. Section
3 describes the emoFBVP database and its salient proper-
ties. The descriptions of experimental set up for deep learn-
ing, feature extraction techniques and baseline models are
in Section 4. Section 5 introduces our DemoDBN models
and investigates their usage for multimodal emotion recog-
nition in an unsupervised context. Section 6 describes our
CDBN models and investigates their usability to recognize
subtle or low intensities of expressions of emotions. Finally,
we share our conclusions and future work in Section 7.

3. emoFBVP Database
To study human emotional experience and expression in

more detail and to develop benchmark methods for auto-
matic emotion recognition, researchers are in need of rich
sets of data. We have recorded responses of actors to affec-
tive emotion labels using four different modalities - facial
expressions, body expressions, vocal expressions and phys-
iological signals. Along with the multimodal recordings,
we provide facial feature tracking and skeletal tracking data.
The recordings of all the data are rated through an evalua-
tion form completed by the actors immediately after each
excerpt of acting emotions. The recordings of this database
are synchronized to enable study of simultaneous emotional
responses using all the modalities.

Ten participants (who are professional actors) were in-
volved in data capture, and every participant displayed 23



different emotions. Recordings of each emotion were done
six times: three in a standing position and three in a seated
position when the body gestures and facial expressions
were tracked and recorded along with vocal expressions,
physiological data and activity respectively. Therefore, the
database provides six examples of each of the 23 emotions
in varying intensities of expression. The two sessions of
recordings (standing and seated) are independent of each
other. This makes it possible to use our database for uni-
modal (using only face, body, physiological signals or activ-
ity), bimodal (face and voice, body and voice, etc.) and mul-
timodal emotion recognition studies. Our database provides
information about the affective communication skills of ev-
ery participant. It also provides evaluation details about the
confidence of expression of emotion, intensity of expression
of emotion and level of ease of expression of emotion us-
ing facial expressions, body gestures and vocal expressions.
Our database, therefore, provides both valuable expression
data and metadata that will contribute to the ongoing devel-
opment of emotion recognition algorithms.

3.1. Properties of emoFBVP Database

The emoFBVP database consists of responses of partic-
ipants to affectively stimulating emotion labels. Different
modalities of measurement require different equipments.
We set up apparatus to record face videos, facial feature
tracking, body gesture videos, skeletal tracking, vocal ex-
pressions and physiological signals simultaneously. The
sensor equipments used to facilitate the recordings of the
modalities include the Microsoft Kinect Sensor, the Zephyr
BioHarness and wrist-worn accelerometers.
Recruitment: Participants were recruited after a city-wide
call for people who have completed basic coursework in
acting/non-verbal communication. They were requested to
provide their formal consent to participate by signing a con-
sent form that gave a detailed description of the purpose and
data capture procedure of the study.
Participant information and assessment: Participants
were asked to provide their age range, gender and ethnic
background. They answered questions to help assess their
affective communication skills. In particular, each par-
ticipant rated his/her overall skill in expressing emotions,
their affective communication skill using facial expressions,
body gestures, vocal expressions and how emotionally ex-
pressive they were (on a scale of 1 to 5, where 5 was very
effective). This information is provided in the database as
part of metadata.
Data capture: Participants were instructed to per-
form/express emotions using facial expressions, body ges-
tures and vocal expressions. Their acted responses (us-
ing face, body, voice and physiological modalities) were
recorded for 23 emotion labels: Happy, Sad, Anger, Dis-
gust, Fear, Surprise, Boredom, Interest, Agreement, Dis-

agreement, Neutral, Pride, Shame, Triumphant, Defeat,
Sympathy, Antipathy, Admiration, Concentration, Anxiety,
Frustration, Content and Contempt during two sessions.
During the first session, participants expressed each of the
23 emotions in three varying intensities of expression in a
standing position; their body gestures were recorded and
their skeletal representation was tracked. During the second
session, participants expressed each of the 23 emotions in
three varying intensities of expression in a seated position;
their facial expressions were recorded and facial features
were tracked. Physiological signals, vocal expressions and
acceleration were recorded continuously during both ses-
sions. After recording their responses to each emotion label,
they filled out an evaluation form. Here, they provided de-
tails about their level of comfort in acting/expressing emo-
tions in each modality. They were asked to rate their con-
fidence level with expressing each emotion, their intensity
while expressing each emotion and their ease of express-
ing each emotion using facial expressions, body gestures
and vocal expressions on a scale of 1 (low) to 5 (high).
Participants were given about 2 minutes between express-
ing different emotions. They used this time to complete the
evaluation form and think about their responses to the next
emotion label. Further, participants were requested to share
their comments and feedback about the data capture pro-
cess. This information is also made available in the database
as part of metadata.
Ground truth: The database was labeled by three evalua-
tors to help improve the authenticity of expression of emo-
tions. This is available as metadata along with the database.

This database is comprised of 1380 samples of audio se-
quences, video sequences of face and body and physiolog-
ical data corresponding to various expressions of emotions.
The salient properties of the database are summarized be-
low.
Face and Voice: We obtained facial expression video se-
quences and facial tracking data from the Microsoft Kinect
for Windows sensor. All video sequences were recorded at
the rate of 30 fps with a video resolution of 640× 480 pix-
els. The sequences are of variable length lasting between
600 and 2000 frames. We used Brekel Kinect Pro Face
software to record 3D face tracking data obtained from the
Kinect sensor. The face tracking data consists of 3D head
position and rotation information, 3D coordinates for 11 an-
imation units and 3D coordinates for 11 shape units for each
frame of the video. Figure 1 shows a snapshot of a subject
portraying emotion, “Surprise” along with a 3D face-mesh
corresponding to the emotion. The animation and shape
units tracked are shown as yellow dots over the subject’s
face and an indicator shows their presence or absence. The
voice data was recorded using Microsoft Kinect for Win-
dows sensor. The Kinect sensor includes a four-element
linear microphone array that captures audio data at 24-bit



Figure 1. Snapshot of a subject portraying emotion, ”Surprise”. Left: 3D face-mesh corresponding to the emotion. Middle: Brekel Kinect
Pro Face tracking animation and shape units shown as yellow dots over the subject’s face. Right: Tracking indicator showing presence or
absence of animation units at each instant.

resolution. This allows accuracy across a wide dynamic
range of voice data. The sensor enables high quality audio
capture with focus on audio coming from a particular direc-
tion with beamforming. The audio sequences are provided
in standard .wav format and are synchronized with the face
and body sequences.
Body: We obtained body expression video sequences and
skeletal tracking data from the Microsoft Kinect for Win-
dows sensor. All video sequences were recorded at the
rate of 30 fps with a video resolution of 640 × 480 pix-
els. The sequences are of variable length and synchro-
nized with the face and audio data. We used the Brekel
Kinect Pro for Body software to record the skeletal tracking
data. The skeletal tracking data provides 3D coordinates of
twenty joints of the users body along with 3D coordinates
for hand, foot and head rotations for each frame of the video
sequence.
Physiological data: We obtained physiological data using
the Zephyr BioHarness. This provides measurements of
the users Heart Rate, ECG R-R interval, Breathing Rate,
Posture, Activity level and Peak Acceleration. This data is
available in .csv and synchronized using time stamps with
the face, body and voice data.
Availability of Database: The emoFBVP database is freely
available for download to the academic research commu-
nity, and is easily accessible through a web-interface 1.

4. Experimental Setup

Here, we first explain the need for developing and train-
ing DBNs on the emoFBVP database for multimodal emo-
tion recognition. Sub-section 4.1 describes the extracted
emotion-specific features and the baseline models used for

1http://emofbvp.org/

comparison.
One of the best ways to validate the authenticity of a

new emotion database is to apply known methods of fea-
ture extraction and investigate the performance of state of
the art models on the collected data. In order to show the
usefulness of our emoFBVP database, we apply extensions
of known deep learning techniques for feature learning and
investigate the performance accuracies for emotion recog-
nition in unimodal, bimodal and multimodal scenarios. Our
database also provides facial feature tracking and skeletal
tracking data. We investigate the advantages of adding these
features to the deep models using feature selection meth-
ods. Kim et al. [7] developed a suite of deep belief net-
work models that showed improvements in emotion clas-
sification performance over baselines that do not use deep
learning. They perform rigorous experiments to show that
deep learning techniques can be used for multimodal emo-
tion recognition. We build extensions of these models, train
them on our multimodal data, perform similar experiments
and investigate the usefulness of the emoFBVP database for
emotion recognition.

4.1. Multimodal Features and Baseline Models

The emoFBVP database allows the study of unimodal,
bimodal and multimodal emotion recognition studies. In
this paper, we consider primary expressions of emotions:
Angry, Happy, Sad, Disgust, Fear, Surprise and Neutral for
multimodal emotion recognition. Using information from
the metadata available along with the database, we split the
data into three sets: (1) Ideal data (all three evaluators agree
on the emotion label), (2) Non-ideal data (majority of the
evaluators agree on the emotion label) and (3) Combined
data (combination of ideal and non-ideal data).

The emoFBVP database gives us facial feature track-



ing data and skeletal tracking data for all expressions of
emotions. We compute prosodic and spectral features like
pitch, energy and mel-frequency filter banks from the voice
data of the database [27]. We compute the mean, variance,
lower and upper quantiles and quantile range of the audio
features (prosodic and spectral features from vocal expres-
sions), video features (facial tracking features from facial
expressions and skeletal tracking features from body ges-
tures) and physiological signals. These features are used
to assess the utility of adding feature extraction techniques
to the features learnt from deep learning while performing
multimodal emotion recognition. All of these features are
normalized to avoid person dependency [28]. We use 180
features extracted from vocal expressions, 540 features ex-
tracted from facial expressions, 540 features extracted from
body gestures and 120 features extracted from physiologi-
cal signal data, giving a total of 1380 features.

We need baseline models for comparison and validation
of results obtained from using deep learning techniques.
For this, these models should not use features generated
via deep learning. We follow [7] and use two SVM mod-
els with radial basis function (RBF) kernels. The SVMs
are trained using one-versus-all approach. The first SVM
baseline model uses Information Gain (IG) for supervised
feature selection and the second SVM baseline model uses
Principal Feature Analysis (PFA) for unsupervised feature
selection. We apply IG to each emotion class; this gives us
seven sets of emotion specific features. The baseline mod-
els are optimized using leave-one-person-out cross valida-
tion method. The parameters of the baseline models are: the
number of selected features using IG and PFA (chosen over
{60, 120, 180} for each ideal, non-ideal and combined data
types), the value of the box constraint for the soft margin in
the SVM (C = 1) and the scaling factor in the RBF kernels
(sigma = 8).

5. DemoDBN Models
In this section, we introduce our DemoDBN models and

study their usage for multimodal emotion recognition in an
unsupervised manner. Sub-section 5.1 gives classification
accuracies for emotion classification using our DemoDBN
models on the emoFBVP database in bimodal and multi-
modal scenarios. In order to show generalizability, we also
deploy our unimodal and multimodal DBN models to per-
form emotion recognition on popular and standard emotion
databases.

An illustration of the proposed DemoDBN models is
given in Figure 2. We extend the DBN models proposed
in [7] to include video data from body gestures and physio-
logical signal data of expressions of emotions. DemoFBVP,
(Figure 2(a)), is a basic two-layer DBN that learns features
from vocal expressions, facial expressions, body gestures
and physiological signals individually in the first hidden

layer. All of these features are concatenated and fed as
input to the second hidden layer. f+DemoFBVP, (Figure
2(b)), is a two-layer DBN that uses supervised feature selec-
tion using IG selection methods prior to DBN pre-training.
DemoFBVP+f , (Figure 2(c)), is also a two-layer DBN that
uses supervised feature selection using IG post DBN pre-
training. 3DemoFBVP, (Figure 2(d)), is a three-layer DBN
that stacks another RBM layer over the second layer. In
summary, the four DemoDBN models are:

1. DemoFBVP: basic two-layer DBN model.

2. f+DemoFBVP: two-layer DBN with feature selection
prior to the training of DemoFBVP.

3. DemoFBVP+f : two-layer DBN with feature selection
added post training of DemoFBVP.

4. 3DemoFBVP: three-layer DBN model.

The hyperparameters are selected using cross validation
over the training data for ideal, non-ideal and combined
data types. We use leave-one-speaker-out cross valida-
tion for selecting the sparseness parameters. The number
of hidden nodes of the two-layer DBN and weight regu-
larization parameters are kept constant. The sparsity pa-
rameters of the bias of vocal expressions, facial expres-
sions, body gestures and physiological signal data are se-
lected as {0.1, 0.2}, {0.02, 0.1}, {0.02, 0.1} and {0.2, 0.3}
respectively. The sparsity parameters of λ for all multi-
modal features are fixed at 6. The number of hidden units
in the first layer of the DemoDBN models (DemoFBVP,
DemoFBVP+f , 3DemoFBVP) is 2000. This results from
concatenating 700 units from facial expressions, 700 units
from body gestures, 400 units from vocal expressions and
200 units from physiological signal features. We fix the
number of second layer hidden units for these DemoDBN
models as 200. For f+DemoFBVP, we perform feature se-
lection using IG and select 100 features from vocal expres-
sions, 200 features each from facial expressions and body
gestures and 80 features from physiological signals. We
then pre-train the RBM layer with 100 nodes for vocal ex-
pressions, 150 nodes each for facial video and body ges-
tures and 50 nodes for physiological signals features. Here,
the sparsity parameters are chosen over {0.1, 0.6} for all
the RBMs and the λ sparsity parameter is kept at 6. The
features learned by the RBM are concatenated and used to
pre-train the first layer of the f+DemoFBVP model.

We propose DemoFV (face and voice), DemoBV (body
and voice), DemoFBV (face, body and voice) DBN
models similar to DemoFBVP models and their vari-
ants: f+DemoFV, DemoFV+f , 3DemoFV, f+DemoBV,
DemoBV+f , 3DemoBV, f+DemoFBV, DemoFBV+f and
3DemoFBV models. We use the same SVM models as the
baseline models to classify the output of all the DemoDBN
models.



Figure 2. Proposed multimodal DemoDBN models: (a) DemoFBVP, (b) f+DemoFBVP, (c) DemoFBVP+f , and (d)3DemoFBVP
.

5.1. Results for DemoDBN Models

Tables 1-4 give classification accuracies for emo-
tion classification using DemoDBN models on emoFBVP
database. Our results demonstrate that the proposed DBN
models generate robust multimodal features for emotion
classification and that we can successfully apply DemoDBN
models for emotion recognition using facial expressions,
body gestures, vocal expressions and physiological sig-
nal modalities. These results also validate the multimodal
data collected in our emoFBVP database and show that the
database can be used for unimodal, bimodal and multimodal
emotion recognition studies.

We find that the three-layer DemoDBN models achieve
maximum percentage classification accuracies for ideal
and non-ideal data. For the combined data type, the
DemoDBN+f models achieve the maximum accuracies.
The baseline models using IG methods always perform bet-
ter than the baseline models using PFA methods for ideal,
non-ideal and combined data types.
Results for DemoFV models: Ideal data: The DemoFV
models achieve classification accuracies ranging from
82.98% to 86.56%. The difference between the perfor-
mance accuracies of the baseline model using IG and the
baseline model using PFA methods is 3.99%. The differ-
ence between classification accuracies of 3DemoFV and
baseline model using PFA is 4.23%.
Non-ideal data: Here, the baseline models using IG and
baseline models using PFA methods show similar perfor-

mance. The 3DemoFV model shows a small improve-
ment in performance over the DemoFV+f (0.59%) and
f+DemoFV (1.2%) models.
Combined data: The DemoFV+f model achieves a maxi-
mum accuracy of 78.32% for combined data.
Results for DemoBV models: Ideal data: The DemoBV
models achieve classification accuracies ranging from
80.78% to 84.99%. The difference between the perfor-
mance accuracies of baseline models using IG methods and
baseline models using PFA methods is 3.97%. The differ-
ence between classification accuracies of 3DemoBV and the
baseline model using PFA is 4.74%.
Non-ideal data: The baseline models using IG and base-
line models using PFA methods show similar performance.
The 3DemoBV model shows a small improvement in per-
formance over the DemoBV+f (0.75%) and f+DemoBV
(1.22%) models.
Combined data: The DemoBV+f model achieves a maxi-
mum accuracy of 76.32% for combined data.
Results for DemoFBV models: Ideal data: The DemoFBV
models achieve classification accuracies ranging from
83.10% to 86.68%. The difference between the perfor-
mance accuracies of the baseline model using IG and the
baseline model using PFA is 3.99%. The difference be-
tween classification accuracies of 3DemoFBV and the base-
line model using PFA is 4.25%.
Non-ideal data: The two baseline models show similar per-
formance. The 3DemoFBV model shows a small improve-
ment in performance over the DemoFBV+f (0.61%) and



Data
Type

Base
line
IG

Base
line
PFA

Demo
FV

Demo
FV+f

f+Demo
FV

3Demo
FV

Ideal 86.32 82.33 82.98 84.92 84.56 86.56
Non-
Ideal

64.78 64.95 65.52 65.82 65.21 66.41

Comb
-ined

75.64 75.83 77.25 78.32 77.78 77.62

Table 1. Classification accuracy (%) for DemoFV models

Data
Type

Base
line
IG

Base
line
PFA

Demo
BV

Demo
BV+f

f+Demo
BV

3Demo
BV

Ideal 84.22 80.25 80.78 82.88 82.46 84.99
Non-
Ideal

62.66 62.86 63.67 63.89 63.42 64.64

Comb
-ined

73.64 73.83 75.25 76.32 75.78 75.62

Table 2. Classification accuracy (%) for DemoBV models

Data
Type

Base
line
IG

Base
line
PFA

Demo
FBV

Demo
FBV+f

f+Demo
FBV

3Demo
FBV

Ideal 86.42 82.43 83.10 84.99 84.68 86.68
Non-
Ideal

64.89 65.75 68.66 68.93 68.34 69.54

Comb
-ined

75.77 75.90 77.38 78.45 77.89 77.78

Table 3. Classification accuracy (%) for DemoFBV models

Data
Type

Base
line
IG

Base
line
PFA

Demo
FBVP

Demo
FBVP+f

f+Demo
FBVP

3Demo
FBVP

Ideal 89.41 85.33 86.20 87.82 87.52 90.10
Non-
Ideal

68.89 68.71 71.14 71.84 71.22 73.11

Comb
-ined

79.82 79.90 82.28 83.10 82.54 82.40

Table 4. Classification accuracy (%) for DemoFBVP mod-
els

f+DemoFBV (1.2%) models.
Combined data: The DemoFBV+f model achieves a maxi-
mum accuracy of 78.45% for combined data.
Results for DemoFBVP models: Ideal data: The
DemoFBVP models achieve classification accuracies rang-
ing from 86.20% to 90.10%. The difference between
the performance accuracies of the baseline models is
4.08%. The difference between classification accuracies of
3DemoFBVP and PFA baseline model is 4.77%.
Non-ideal data: The two baseline models show similar per-
formance. The 3DemoFBVP model gives a small improve-
ment in performance over the DemoFBVP+f (1.27%) and

f+DemoFBVP (1.89%) models.
Combined data: The DemoFBVP+f model achieves a max-
imum accuracy of 83.10% for combined data.

Our results show that we can successfully employ
DemoDBN models for the task of multimodal emotion
recognition. The proposed DemoDBN models successfully
retain complex non-linear feature relationships that exist be-
tween the different modalities for ideal, non-ideal and com-
bined data types (as shown by the performance accuracies
achieved). Our results highlight the importance of feature
learning using deep architectures over unsupervised feature
selection for bimodal and multimodal emotion classification
using the emoFBVP database of facial expressions, body
gestures, vocal expressions and physiological signals. With
this study, we validate the use of the emoFBVP database
for emotion recognition studies and believe that the affec-
tive computing community will benefit from the collection
of modalities recorded.

5.2. Results on Standard Emotion Corpora

We compare our models to the SVM baseline we ex-
plained in earlier sections for each modality. Tables 5-8
give emotion recognition accuracies while using unimodal
(facial, vocal, physiological expressions of emotions) and
multimodal DBN models (multimodal expressions of emo-
tions).

Database SVM Baseline DemoF 3DemoF
Cohn Kanade 95.4 % 95.9 % 96.3 %

Table 5. Emotion recognition using facial expressions

Database SVM Baseline DemoV 3DemoV
Mind Reading 90.62% 92.1 % 92.87 %

Table 6. Emotion recognition using vocal expressions

Database SVM Baseline DemoP 3DemoP
DEAP 78.6% 78.8 % 79.2 %

Table 7. Emotion recognition using physiological data

Database SVM Baseline DemoFBVP 3DemoFBVP
MAHNOB-
HCI

52.4% 53.1 % 54.8 %

Table 8. Emotion recognition using multimodal data

To depict generalizability, we use the Cohn Kanade,
MindReading, DEAP and MAHNOB-HCI databases to
evaluate respective performances. These databases are very
popular and are standard datasets used by the affective re-
search community for emotion recognition. We observe that
our deep models perform better than the SVM baselines in
both unimodal and multimodal scenarios.



6. Convolutional Deep Belief Model (CDBN)
In this section, we describe our multimodal CDBN

model and investigate their usability to recognize subtle or
low intensities of expressions of emotions. Convolutional
RBMs are an extension of regular RBMs [24]. These are in-
spired by convolutional neural nets and rely on convolution
and weight sharing. When convolutional RBMs are stacked
together, they form convolutional deep belief networks [22].
Convolutional DBNs are solely generative models that are
trained in a greedy layer-wise manner. Here, the input is fed
into the networks and the features learned by the last layer
are fed to a Support Vector Machine (SVM). In CRBMs, the
network’s visible layer is a matrix, instead of a vector. This
enables the network to understand the spatial proximity of
the pixels, leading to more robust feature learning (when
compared to regular RBMs).

6.1. Results for CDBN Models

We used primary expressions of emotion of the lowest
intensity from the emoFBVP, Cohn-Kanade, Mind Reading,
DEAP and MAHNOB-HCI databases.

SVM
Baseline

DemoFBVP CDemoFBVP CDemoFBVP
+ROI

75.67 76.54 81.41 83.18

Table 9. Emotion recognition using emoFBVP database

SVM Baseline DemoF CDemoF CDemoF +ROI
95.4 95.9 96.8 97.3

Table 10. Emotion recognition using Cohn Kanade database

SVM Baseline DemoV CDemoV
90.62 92.1 93.4

Table 11. Emotion recognition using mind reading database

SVM Baseline DemoP CDemoP
78.6 78.8 79.5

Table 12. Emotion recognition using DEAP database

SVM
Baseline

DemoFBVP CDemoFBVP CDemoFBVP
+ROI

52.4 53.1 57.9 58.5

Table 13. Emotion recognition using MAHNOB-HCI
database

We applied the CDemoFBVP model (a model very sim-
ilar to DemoFBVP but formed by stacking convolutional
RBMs) to learn the multimodal deep features. We also ex-
tracted regions of interest (ROI) in the face (around the eyes,
eyebrows and mouth area) and body images (head, hands
and legs) and fed them to the deep CDemoFBVP+ROI
model. Tables 9-13 show percentage emotion recognition

accuracies on various emotion corpora. Tables 9, 10 and 13
compare performances of DBN, CDBN and CDBN+ROI
models with the SVM baselines. Tables 11 and 12 compare
performances of DBN and CDBN models with SVM base-
line models on voice and physiological signal data (there
is no ROI in voice and physiological data). Again, to de-
pict generalizability, we show results on standard emotion
datasets. We notice that our CDBN+ROI models outper-
form our CDBN models which in turn perform better than
the DBN models and SVM baselines.

7. Conclusions and Future Work
We made three major contributions in this work. We

presented the emoFBVP database of multimodal recordings
of actors enacting various expressions of emotions. This
is one of the first emotion datasets that has recordings of
varying intensities of expressions of emotions in multiple
modalities recorded simultaneously. We strongly believe
that the affective computing community will greatly ben-
efit from the large collection of modalities recorded. Next,
we described four deep belief network DemoDBN models
and showed that these models generate robust multimodal
features for emotion classification in an unsupervised man-
ner. Our experimental results showed that our DemoDBN
models perform better than the state of the art methods for
emotion recognition using popular emotion corpora. This
validated the use of our emoFBVP database for multimodal
emotion recognition studies. Thirdly, we showed that con-
volutional deep belief network (CDBN) models along with
region of interest extraction learn salient multimodal fea-
tures for recognition of low intensity/subtle expressions of
emotions.

One of the main goals for the future is to build a real-
time multimodal emotion recognition system using deep ar-
chitectures. In a real-time scenario, data from one or more
modalities may be absent. We hope to develop models that
will continue to perform and successfully recognize emo-
tions even when one or more modalities are absent. Our
preliminary experiments revealed that the first deep layer
learns to identify edges and simple shapes, the second layer
identifies more complex shapes and objects (like eyes, nose,
mouth etc.) and the third layer learns which shapes and ob-
jects can be used to define a facial expression. Analyzing
the multimodal features learned using the deep models to
better understand affect, is an interesting direction for fu-
ture research.
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